Product Description:
Part Number:
Style:

SPECIFICATIONS

8" PLASTIC COM-PAX-IAL BLOWER (220V / 50 Hz) 9533-E, 9533-15E, 9533-25E
AXIAL FAN $\mathbf{8}$ " $(20 \mathrm{~cm})$ - WITH OR WITHOUT CANISTER

GENERAL DESCRIPTION:

High output from a compact axial blower, designed for easy use and storage without sacrificing airflow. Available as a complete system with built in canister and ducting.

CONSTRUCTION:

- Lightweight, corrosion, UV, and chemical resistant polyethylene housing \& canister assembly
- Durable construction design and super quiet.
- Available as blower only or complete unit with 15^{\prime} or 25^{\prime} of ducting and storage canister
- Canister attaches to intake or output side of blower for suction or ventilation
- Bottom enclosure to protect electrical components
- Built in On/Off switch
- Polypropylene nine blade fan with steel/powder coated grill
- Carry handle molded into blower and canister housing
- Equipped with five (5) feet

MOTOR:

HP:
Amperage:
Max RPM: 2800 (Loaded at 220 Volts, 50 Hz)
Cord: $\quad 15 \mathrm{ft}$. AWG
Switch: ON/OFF switch

Model 9533-15E

DUCTING: (included on 9533-15E and 9533-25E models)

- Single-Ply Lightweight Vinyl/polyester, PVC coated 150° F Temp resistant.
- Non-Collapsible Retractable design.
- Class 1 hard drawn spring steel wire helix, ASTM 227 Specs.
- Yellow with black wear-strip and integrated nylon attachment strap

BLOWER DIMENSIONS:

Blower P/N	Length (cm)	Width (cm)	Height (cm)	Weight -Lb (Kg)
$9533-\mathrm{E}$	$131 / 4 "(33.66)$	$12^{\prime \prime}(30.5)$	$13 \frac{3 / 4 "}{4 \prime \prime}(34.9)$	$17(7.7)$
$9533-15 \mathrm{E}$	$32^{\prime \prime}(81.3)$	$131 / 2 "(34.3)$	$143 / 4 "(37.5)$	$33(14.9)$
$9533-25 \mathrm{E}$	$32 "(81.3)$	$131 / 2 "(34.3)$	$141 / 2 "(36.8)$	$38(17.2)$

FLOW RATES: (flow rates meas. with 15 ' of $8 "$ ducting)

Blower P/N	Free Air CFM $\left(\mathrm{M}^{3} / \mathrm{Hr}\right)$	One $90^{\circ} \mathrm{Bend}$ CFM $\left(\mathrm{M}^{3} / \mathrm{Hr}\right)$	Two 90° Bends CFM $\left(\mathrm{M}^{3} / \mathrm{Hr}\right)$
$9533-E$ Series	$831(1411)$	$709(1204)$	$586(995.6)$

